
PacVis:	visualizepacman	local
database	

Table	of	Contents
Contents

Motivation	for	PacVis
Predecessors	of	PacVis

pactree
pacgraph

http://localhost:8000/en/pacvis.html#motivation-for-pacvis
http://localhost:8000/en/pacvis.html#predecessors-of-pacvis
http://localhost:8000/en/pacvis.html#pactree
http://localhost:8000/en/pacvis.html#pacgraph
http://localhost:8000/en/pacvis.html


So	here	is	PacVis
The	legend	and	usage	of	PacVis
Some	facts	you	can	learn	from	PacVis

Dependency	hierachy
Circular	dependencies
Some	packages	don't	have	dependency	
relationship
Linux	(the	kernel)	is	unimportant,	if	we	
only	look	at	dependencies
pacman	-Qtd	cannot	find	orphan	
packages	with	circle	dependency

The	future	of	PacVis

PacVis

http://localhost:8000/en/pacvis.html#so-here-is-pacvis
http://localhost:8000/en/pacvis.html#the-legend-and-usage-of-pacvis
http://localhost:8000/en/pacvis.html#some-facts-you-can-learn-from-pacvis
http://localhost:8000/en/pacvis.html#dependency-hierachy
http://localhost:8000/en/pacvis.html#circular-dependencies
http://localhost:8000/en/pacvis.html#some-packages-don-t-have-dependency-relationship
http://localhost:8000/en/pacvis.html#linux-the-kernel-is-unimportant-if-we-only-look-at-dependencies
http://localhost:8000/en/pacvis.html#pacman-qtd-cannot-find-orphan-packages-with-circle-dependency
http://localhost:8000/en/pacvis.html#the-future-of-pacvis


Motivation	for	PacVis
I	must	admit	that	I	love	Arch	Linux,	largely

because	Arch	Linux	made	me	feel	like	I	really	own	the
whole	system.	In	my	Arch	Linux	system,	I	know
clearly	every	package	I	have	installed	and	why	I
installed	it.	I	can	find	which	package	brings	in	a	give

http://localhost:8000/en/pacvis.html#id2


file.	A	Debian/Fedora/openSUSE	user	with	enough
experience	may	achieve	this	with	their	favorite
package	manager	too,	but	they	must	overcome	a
much	higher	complexity	with	their	distro's	fine-
grinding	packaging	strategy.	Usually	they	have	3	to
10	times	more	packages	than	Arch	Linux	on	a	similar
setup.	And	with	regard	to	packaging	system,	they
must	work	with	much	more	details	than	Arch's
simple	PKGBUILD	based	packaging.

Every	user	who	successfully	installed	Arch	Linux
should	have	learned	that,	after	the	initial	installation,
you	will	only	get	a	minimum	setup.	The	most
important	step	in	the	installation	guide	on	ArchWiki
is	a	command	 pactrap	/ ​mnt	base 	,	which	will	use
/ ​mnt 	as	the	filesystem	root	and	call	 pacman	-S
base 	inside	that	root	to	install	the	whole	base	group.
And	that's	basically	all	you	will	get	after	the	install.
The	initial	system	has	nearly	nothing.	Everything	you
need	will	be	installed	afterwards,	manually	by	using
pacman 	.	It	is	nothing	unnecessary,	only	for	your

own	need.
But	after	using	the	system	for	a	long	time,	there

are	unavoidably	some	packages	inside	the	system
which	are	installed	and	used	for	awhile	and
abandoned.	They	are	like	the	old	furnitures	inside
your	house,	taking	space	and	covered	by	dusts.	We
have	 pacman	-Qtd 	to	help	you	find	all	orphan



packages,	namely	those	installed	as	dependency
for	other	packages	once	but	not	needed	for	now	,
but	for	manually	installed	packages,	we	have	no
good	tool	but	manually	checking	them	one	by	one.

So	I	was	looking	for	a	tool	to	help	me	understand
the	relations	in	my	system.	In	particular,	I	want	a	tool
to	help	me	do	these	things:

1.	 Find	packages	that	I	installed	manually	but	not
needed	now

2.	 Find	those	large	and	space-consuming
packages

3.	 Understand	the	relationships	between
packages

Android	System	Architecture

About	the	last	thing	"relations	between

https://en.wikipedia.org/wiki/Android_(operating_system)


About	the	last	thing	"relations	between
packages",	I	once	saw	the	diagram	of	macOS	
Architecture	and	Android	System	Architecture,	and	I
was	impressed	by	the	layered	hierarchy	in	these
diagrams.	I	was	wondering	since	then,	is	it	possible
to	draw	a	similar	layered	architecture	diagram	for
modern	Linux	desktop	?	Or	will	a	Linux	desktop	be
much	different?	I	can	find	out	hierarchy	diagrams	for
Linux	kernel	or	Xorg	graphic	stack	on	Wikipedia	or
other	sites,	but	I	don't	know	such	diagrams	for	the
whole	distribution.	And	further	I	thought,	can	I	draw
such	diagram	from	the	dependency	relationships
between	packages	automatically?

Predecessors	of	PacVis
Before	working	on	PacVis,	I	have	tried	several

similar	tools.	Some	of	them	meet	some	of	my	needs,
but	they	all	lack	certain	features	that	I	considered
important.	These	tools	became	the	prototype	of
PacVis,	as	they	enlightened	me	of	how	PacVis	should
be.

https://en.wikipedia.org/wiki/Architecture_of_OS_X
http://localhost:8000/en/pacvis.html#id3


pactree
pactree	started	as	an	individual	project	,	but	now

it	is	part	of	pacman.	From	its	manpage	we	can	see
that	the	output	of	pactree	is	a	dependency	tree
starting	from	a	given	package.	By	appending	 --
graph 	parameter,	pactree	can	also	output	a	diagram
in	dot	format,	then	we	can	render	this	diagram	using
dot	command:

pactree	pacvis-git	-d3	--graph	|	dot	-
Tpng	>pacvis-pactree.png

http://localhost:8000/en/pacvis.html#id4
https://bbs.archlinux.org/viewtopic.php?id=51795
https://www.archlinux.org/pacman/pactree.8.html
http://www.graphviz.org/


1 $	pactree	pacvis-git	-d3
2 pacvis-git
3 ├─python-tornado
4 │	└─python
5 │			├─expat
6 │			├─bzip2
7 │			├─gdbm
8 │			├─openssl
9 │			├─libffi
10 │			└─zlib
11 ├─pyalpm
12 │	├─python
13 │	└─pacman
14 │			├─bash
15 │			├─glibc
16 │			├─libarchive
17 │			├─curl
18 │			├─gpgme
19 │			├─pacman-mirrorlist
20 │			└─archlinux-keyring
21 └─python-setuptools
22 		└─python-packaging
23 				├─python-pyparsing
24 				└─python-six
25 	$	pactree	pacvis-git	-d3	--graph	|	
dot	-Tpng	>pacvis-pactree.png

From	the	rendered	diagram	we	can	see	that,
because	some	packages	may	share	common
dependencies,	the	whole	diagram	is	no	longer	a	tree	

https://en.wikipedia.org/wiki/Tree_structure


in		graph	theory	.	During	the	initial	prototyping	of
PacVis,	I	tried	to	parse	the	output	of	pactree	and
pacman	using	bash/python	scripts,	to	draw	a	single
diagram	for	the	whole	system.	However	the	rendered
picture	is	so	large	that	it	takes	hours	for	dot	to	layout
them,	and	the	result	is	barely	viewable	in	an	image
viewer	or	a	browser.

I	need	to	say	that	there	will	be	no	PacVis	if	there
is	no	pactree.	Even	the	pyalpm	library	that	I	used	in
PacVis	is	a	python	binding	for	alpm,	which	is	born
during	the	rewrite	of	pactree	in	C	language.

pacgraph
The	output	of	pacgraph

https://en.wikipedia.org/wiki/Tree_structure
http://localhost:8000/en/pacvis.html#id5


pacgraph	is	developped	by	a	Arch	Linux	Trusted
User	keenerd	.	It	is	written	in	Python,	as	is	PacVis.
Comparing	with	pactree,	pacgraph	is	definitely	more
suitable	for	my	needs.	It	will	draw	a	diagram	for	all
the	packages	in	the	system,	using	a	clever	layout
algorithm	that	surpass	the	performance	of	dot's
layout.

The	output	of	pacgraph	is	an	artistic	diagram
with	different	font	size	of	package	names	showing
their	disk	usage.	By	viewing	pacgraph's	output,	we
can	determine	the	overall	system	structure,	e.g.
whether	the	system	is	a	desktop	system	or	a	server.
We	can	easily	find	large	packages	and	consider
remove	them.

There's	more.	pacgraph	provided	an	interactive

http://kmkeen.com/pacgraph/index.html
http://kmkeen.com/


There's	more.	pacgraph	provided	an	interactive
GUI	called	pacgraph-tk,	written	clearly	in	tk.	You	can
zoom	in	to	see	details	or	zoom	out	to	see	the	whole
graph	in	GUI,	and	you	can	highlight	one	package	to
see	its	relations	to	others.

And	pacgraph	support	to	render	the
dependencies	of	a	selected	group	of	packages,	not
all,	like	pactree	does.

But	pacgraph	does	not	meet	all	my	needs.	I	want
a	diagram	to	show	the	architecture	of	the	system,	but
pacgraph	don't	differ	"the	packages	that	this
package	depend	on"	and	"the	packages	that
depends	on	this	package".	In	other	words,	pacgraph
draws	a	undirected	graph,	but	I	want	a	directed
graph,	that	reflects	the	layered	hierarchy	of
dependency	relationship.

So	here	is	PacVis
PacVis	on	startup

http://localhost:8000/en/pacvis.html#id6


With	these	predecessors,	I	started	working	on
PacVis.	The	development	takes	me	2	month,	and
largely	break	into	2	stages.	In	the	first	stage	I	wrote
basic	logics	and	a	prototype	of	the	UI.	In	the	second
stage	I	applied	the	templates	from	https://getmdl.io/
.	Now	finally	it	is	usable	for	others.

So	several	days	ago	I	made	a	PKGBUILD	for
pacvis	on	AUR:	pacvis-git.	Now	it's	fairly	easy	to	run
pacvis	locally	on	a	Arch	Linux	system.	You	can	use
any	aurhelper	you	familiar	with,	or	build	it	directly
from	AUR:

https://getmdl.io/
https://aur.archlinux.org/packages/pacvis-git/


1 ~$	git	clone	aur@aur.archlinux.org:p
acvis-git.git
2 ~$	cd	pacvis-git
3 ~/pacvis-git$	makepkg	-si
4 ~/pacvis-git$	pacvis
5 Start	PacVis	at	http://localhost:888
8/

Following	the	instruction,	open	
http://localhost:8888/	in	a	browser	then	you	can	see
PacVis's	result	of	your	own	system.	As	a
demonstration	you	can	also	visit	PacVis	on	my	Arch
Linux	server	:	https://pacvis.farseerfc.me/	.	It	is
showing	a	minimal	server	setup,	that	might	load	and
layout	faster	than	a	normal	desktop	system.

PacVis	on	Windows	msys2

http://localhost:8888/
https://pacvis.farseerfc.me/


As	a	side	note,	pacvis	only	depends	on	pyalpm
and	tornado,	so	there	should	be	no	problem	running
it	on	other	pacman-based	systems,	including	msys2	
on	Windows	(altough	building	a	msys2	python-
tornado	may	take	some	non-trival	effort).

The	legend	and	usage	ofPacVis
PacVis	resembles	the	UI	of	a	map	app	such	as

Google	Maps.	You	can	use	wheel	of	mouse	to	zoom
and	drag	to	move,	or	pinch	gestures	on	a	touch
screen.	There	is	a	side	panel	on	the	right	top	corner
and	you	can	hide	it	when	you	don't	need	it.	There	are
some	zoom	buttons	on	the	right	bottom	corner.

The	dependencies	of	pacvis-git	package

The	whole	diagram	is	made	up	of	small	circles

https://msys2.github.io/
http://localhost:8000/en/pacvis.html#id7


The	whole	diagram	is	made	up	of	small	circles
and	arrows	in	between	circles.	A	circle	represent	a
package,	while	an	arrow	represents	a	dependency
relationship.	If	you	zoom	into	details,	you	can	see
text	under	the	circles	showing	their	package	names.
Hover	on	packages	will	also	give	you	infos	about	the
package.	You	can	select	a	package,	and	in	the	side
panel	there	will	be	more	detailed	infomation	about
that	package.

The	above	picture	is	showing	the	dependencies
of	pacvis-git	package	itself.	It	dependes	on	pyalpm,
python-tornado	and	python-setuptools,	while
pyalpm	is	in-turn	depend	on	pacman.	A	package	in
purple 	means	it	is	installed	manually,	while	a

package	in	 orange 	means	it	is	installed	as	a
dependency	for	other	packages.	The	color	of	arrows
usually	follow	their	origin	package's	color.

Note	that	most	arrows	in	the	diagram	are
pointing	bottom-up,	this	is	because	PacVis	will	do	a
topology	sort	based	on	the	dependencies	of
packages.	From	the	topology	sort,	PacVis	assigned	a
topology	level	to	each	package,	e.g.	pacvis-git	has	a
topo-level	of	39,	its	dependency	pyalpm	has	a	topo-
level	of	38,	and	pacman	is	sat	on	the	topo-level	37.
Layering	packages	with	their	topo-level	is	the	main
difference	of	PacVis	with	pacgraph.

Besides	manually	zoom-in	to	look	around,	you



Besides	manually	zoom-in	to	look	around,	you
can	also	use	PacVis's	search	box	to	locate	a	particular
package	by	its	name.	And	when	you	select	a	package,
the	related	package	names	will	be	shown	in	the	Dep
and	Req-By	tabs	in	the	sidebar.	These	package
names	are	made	as	buttons	so	you	can	click	them	to
browse	the	whole	dependency	graph.

Let	me	describe	some	arguments	related	to	the
implementation:
Max	Level

This	will	limit	the	max	topo-level	that	PacVis
renders.	When	there	are	too	many	packages,	the
layout	algorithm	will	take	a	lot	of	time.	Limiting	this
is	very	useful	during	debug	of	PacVis.
Max	Required-By

This	will	limit	the	max	required-by-relationship
that	PacVis	renders.	If	you	play	around	in	PacVis,	you
will	soon	find	that	most	packages	in	the	system
directly	depends	on	glibc	or	gcc-libs.	Rendering	these
well-known	dependency	may	result	in	a	lot	of	long
arrows,	that	reduce	the	readability	of	the	whole
diagram.	You	can	limit	this	to	a	lower	number	so	that
PacVis	will	not	render	these	well-known
dependencies.



Some	facts	you	canlearn	from	PacVis
A	normal	KDE	desktop	Full	image（17M）

http://localhost:8000/en/pacvis.html#id8
http://localhost:8000/en/images/pacvis-16384.png




You	may	find	many	facts	by	playing	around	in
PacVis.	An	example	will	be	the	aforementioned	"most
packages	depends	on	glibc".	Besides	that,	I	will	give
some	more	examples	below.

Dependency	hierachy
The	packages	in	the	system	is	clearly	divided	into

several	layers:
glibc,	etc.	C	runtime
Bash/Perl/Python	etc.	script	languages
coreutils/gcc/binutils	etc.	core	binary	utilities
pacman/systemd	etc.	large	system	utilities
gtk{2,3}/qt{4,5}	etc.	GUI	toolkit
chromium	etc.	GUI	Applications
Plasma/Gnome	etc.	Desktop	environments

This	largely	meet	my	overall	understanding,	but
some	details	are	interesting	to	me.	For	example,	zsh
dependes	on	gdbm	which	in-turn	depends	on	bash,
which	means	that	you	can	not	get	rid	of	bash	even	if
you	only	use	zsh.	For	another	example,	python
package	(which	is	python3	in	Arch	Linux)	and
python2	and	pypy	sit	roughly	on	the	same	topo-level
in	the	diagram.

http://localhost:8000/en/pacvis.html#id9


zsh	indirectly	depends	on	bash	because	of
gdbm
However	there	are	some	facts	beyond	common

knowledge,	e.g.	qt5-base	<	qt4	<	gtk2	<	gtk3	with
regard	to	topo-level.	Qt5	was	split	into	several
packages	therefore	it	is	understandable	that	qt5-
base	is	lower	than	qt4.	The	fact	that	gtk	is	more	high
level	than	qt	may	beyond	most	expectations
(including	mine).

Circular	dependencies
There	are	some	packages	that	have	circular

dependencies	in	between.	An	example	will	be
freetype2	and	harfbuzz.	freetype2	is	a	library	for	font
rendering,	and	harfbuzz	is	a	library	to	deal	with
OpenType	font	shapes.	They	depend	on	each	other.
Another	example	is	kio	and	kinit	of	KDE.	kio	provides
VFS-like	and	FUSE-like	resource	abstraction	for	KDE
applications,	while	kinit	is	in	charge	of	initializing
KDE	desktop	environment.

http://localhost:8000/en/pacvis.html#id10


Circular	dependency	between	freetype2
and	harfbuzz
Because	of	these	circular	dependencies,	PacVis

cannot	simply	apply	topology	sort	directly.	Before
that,	PacVis	will	firstly	find	all	circles	in	the
dependency	graph	to	break	these	circles.	It	renders
the	relationship	that	will	cause	a	circle	as	red	arrows
in	the	diagram.

Some	packages	don't	havedependency	relationship

man-pages	and	licenses	don't	have
dependencies

There	are	some	packages	that	don't	depend	on

http://localhost:8000/en/pacvis.html#id11


There	are	some	packages	that	don't	depend	on
others,	and	don't	depended	by	others.	They	are
isolated	in	the	whole	diagram,	e.g.	man-pages	and
licenses.	These	packages	sit	on	the	most	top	level	of
the	diagram,	with	a	topo-level	of	0.	PacVis	will	render
them	as	 blue 	squares	specially.

Linux	(the	kernel)	isunimportant,	if	we	only	look	atdependencies
All	userspace	program	depend	on	glibc,	which

calls	the	kernel	using	well-defined	syscalls.	As	a
result,	if	we	only	look	at	userspace	dependencies,
glibc	and	other	GNU	components	are	the	center	of
the	GNU/Linux	distribution,	while	Linux	the	kernel	is
just	located	in	a	random	place	deeply	blew	the
dependency	graph.	On	my	demo	server	the	Linux
package	is	even	located	on	the	most	bottom	level
because	it	depends	on	mkinitcpio	which	in-turn
depend	on	many	components	in	the	system.

pacman	-Qtd	cannot	find

http://localhost:8000/en/pacvis.html#id12
http://localhost:8000/en/pacvis.html#id13


pacman	-Qtd	cannot	findorphan	packages	with	circledependency

msys2	packages	with	circle	dependency
I	saw	an	archipelago	of	packages	from	mingw

repo	when	testing	PacVis	on	msys2.	To	my	surprise,
they	don't	connected	to	any	manually	installed
packages,	something	strange	as	I	routinely	run
pacman	-Qtd 	and	remove	the	results	on	all	my

systems.	After	zoomed	in	I	found	that	they	contained
a	circle	dependency	which	indicated	 pacman	-Qtd
cannot	find	these	orphan	packages,	not	like	a	GC
algorithm.

The	future	of	PacVis
Currently	PacVis	is	what	I	planned	to	make,	with

some	features	added	during	the	development.	Some
of	these	added	features	are	related	to	the	poor
performance	of	the	layout	algorithm	(e.g.	limiting	the
max	level).

http://localhost:8000/en/pacvis.html#id13
http://localhost:8000/en/pacvis.html#id14


In	the	future	I	planned	to	add	more	features:
1.	 More	reasonable	behavior	for	optdeps.

Currently	PacVis	draw	optdeps	but	do	not
consider	it	during	the	topology	sort.

2.	 More	reasonable	dependency	resolution.
Sometimes	the	dependency	is	not	written
directly	as	package	names,	instead	they
appear	in	 provides 	array	in	the	metadata.
Currently	PacVis	resolve	all	dependencies
using	alpm	directly,	which	will	lose	these
information.

3.	 Currently	PacVis	did	not	consider	the
repository	(core/extra/community)	and
package	group	that	a	package	belongs	to.	In
the	future	PacVis	may	consider	these
infomation	to	render	a	clearer	hierarchy.

4.	 Currently	PacVis	cannot	show	only	part	of	the
packages.	In	the	future	we	may	provide	the
ability	to	draw	only	a	part	of	all	the	installed
packages	like	pactree/pacgraph	does.

If	you	want	some	features	in	PacVis,	please	leave	
me	an	issue	.

https://github.com/farseerfc/pacvis/issues



